
This article appeared in the
April 2005 issue of

Subscribe instantly at
www.bijonline.com

• Free in the U.S.

• $48 per year in Canada and Mexico

• $96 per year everywhere else

What SOA Isn’t:

Debunking
 the Myths of S

ervice Orientation

By Steve Vinoski

http://bijonline.com/SubscribeFree.asp?form=New

B u s i n e s s I n t e g r a t i o n J o u r n a l • A p r i l 2 0 0 5 • 7

Every day, CIOs and enterprise archi-
tects face a variety of real-world IT

challenges. The list is almost as long as it
is familiar because these problems
never seem to go away. The following
questions a typical CIO might ask him-
self convey the essence of these never-
ending challenges:

• How can I significantly reduce the cost
of our enterprise IT infrastructure
without compromising our competi-
tive advantage?

• How can I ensure that our IT infra-
structure becomes more responsive and
business focused, while simultaneously
becoming enduring and flexible?

• How can I strive for IT rationalization
while simultaneously protecting previ-
ous investments and the strategic appli-
cations that run on them?

• Can I deploy a new architecture in a
phased manner rather than a disrup-
tive, risky “big bang” approach?

• Can I quantify the ROI for my initia-
tives and facilitate IT consolidation and
innovation?

These aren’t new questions and the
usual answers are predictably lacking.
Vendors are constantly touting the next
great solution that will easily solve these
problems. The latest silver bullet—
Service-Oriented Architecture (SOA)—is
g e n e r a t i n g c o n s i d e r a b l e h y p e .
Unfortunately, the messages coming
from competing vendors are often con-
tradictory and can be confusing. It’s diffi-
cult to understand if and how SOA can
benefit your business.

Migrating your enterprise to an
SOA approach can be beneficial if
you’re realistic in your expectations of
what SOA is and isn’t. This article
addresses some of the myths surround-
ing SOA by discussing a few popular,
yet misunderstood trends that also
share the acronym “SOA.”

Is SOA New?
SOA doesn’t stand for “State Of the

Art.” Rather, service orientation is firmly
based on fundamental software engi-
neering principles in use for decades. An
indispensable element of service orienta-
tion is loose coupling between software
services and applications. Good software
developers have long understood the
benefits of minimizing coupling
between software modules while also
maximizing the cohesiveness of each
module. Loose coupling is even easier to
achieve in today’s distributed applica-
tions since the network provides a natu-

Debunking
the Myths
of Service
Orientation
By Steve Vinoski

Debunking
the Myths
of Service
Orientation
By Steve Vinoski

WHAT SOA
ISN’T:

8 • B u s i n e s s I n t e g r a t i o n J o u r n a l • A p r i l 2 0 0 5

ral division between applications. When
used properly, the distributed comput-
ing paradigm helps enforce these funda-
mental software engineering principles.

There are numerous examples of
distributed computing technologies,
including the Distributed Computing
Environment (DCE), the Common
Object Request Broker Architecture
(CORBA), the Distributed Common
Object Model (DCOM), and Enterprise
JavaBeans (EJB), being used as the basis
for successful service-oriented systems.
However, this isn’t to say that service
orientation today is just a reinvention
of these earlier technologies. In addition
to being focused on distributed sys-
tems, these technologies were also part-
ly focused on programming interfaces
and infrastructure. This isn’t the case
for modern service orientation. Instead
of requiring the same heavyweight dis-
tributed computing infrastructure
under all applications that connect to
each other to consume or supply servic-
es, modern service-oriented approaches
focus solely on the messages that service
consumers and providers exchange
with each other.

Conjuring Up an Architecture
SOA doesn’t stand for “Summon Our

Architecture.” If you don’t understand
the fundamentals that separate good
software from bad, no amount of wish-
ful thinking will conjure up a magical
architecture that suddenly makes a real
boy out of your enterprise Pinocchio.

Building good software is hard. No
architectural approach is a substitute for
understanding the fundamentals of soft-
ware design and construction, or for
understanding system requirements and
being able to develop and deploy solu-
tions that properly address those require-
ments. Too many developers and
architects try to take shortcuts. The
reduced quality typically resulting from
those shortcuts is what gives the public
such a poor impression of software. The
enterprise computing systems these
architects and developers create are com-
posed of ad hoc point-to-point links

between applications that were put
there with little forethought. The result
is typically a system that’s hard to change
and easily broken.

Realistically, it takes time to learn
about and successfully apply the princi-
ples of service orientation to your enter-
prise. Be prepared to take several
different views of your system:

• A “bottom-up” services view is impor-
tant to help you determine which
aspects of your infrastructure can most
readily be service-enabled.

• A “top-down” view is necessary to help
you determine which applications
need to rely on which services, and to
help you maintain the big picture view
of what you’re really trying to accom-
plish.

• A “message-focused” view of your sys-
tem is necessary so you understand
what messages your services accept and
produce.

You need to:

• Determine what kind of services you
need immediately to address specific
problems.

• Understand the messages that services
and their consuming applications will
exchange.

• Know how services you create today
will fit into the overall architecture of
your enterprise.

• Invoke and rely on the principles and
fundamentals of good software design
and construction.

• Continue improving the quality of
your enterprise services with each iter-
ation.

Creating a flexible, extensible service-
oriented system isn’t easy. You’ll go a
long way toward ensuring the success of
your IT improvement initiatives if you
realize service orientation isn’t magic and
you take the time and effort to pursue
and repeat these important steps.

Diversity and Heterogeneity
SOA doesn’t stand for a “Same On

All” approach or as many vendors have
unfortunately suggested, “Scrap Older
Applications.”

Don’t accept a vendor sales pitch that
says you need to replace all your soft-
ware with their software to get the bene-
fits of SOA. That’s completely false.
Real-world computing systems are
always diverse and heterogeneous.
While many enterprises choose to
embrace a common infrastructure for
their projects going forward, they aren’t
prepared to invalidate the previous tech-
nology investments they’ve made by
adopting a “rip-and-replace” strategy. Not
only is this strategy unwise, it’s nearly
impossible to effectively achieve.

Few enterprises can move all their
systems to new platforms in a “big bang”
approach. They lack the time or budget
to redevelop, retest, redeploy, and requal-
ify all their critical applications.
Moreover, the original developers of crit-
ical business services and the source code
may not be available or easily found. For
most large enterprises, a rip-and-replace
strategy can’t be implemented fast
enough to keep up with advances in
technology. By the time you finished rip-
ping and replacing, the “new” technology
would be old.

Rather than rip and replace, renovate
your existing systems and applications.
Doing this in a way that migrates every-
thing toward service orientation requires
a focus on extensibility and abstraction.
Specifically, the resulting system must
be based on abstractions that let service
and consumer applications interact
while their underlying implementations
and communication details remain hid-
den from each other. These abstractions
are critical to allowing your enterprise
system to accommodate existing plat-
forms and protocols while supporting
the inclusion of new ones.

Enterprises also need to allow for
extensibility in the area of Qualities of
Service (QoS), specifically in areas such
as security, management, fault toler-
ance, and transactions. Your existing
systems will likely already be based on
native capabilities in these areas, and

b u s i n e s s i n t e g r a t i o n j o u r n a l t a k e a w a y s

BUSINESS
• A successful Service-Oriented Architecture strategy can't be

viewed as a silver bullet solution to the IT architecture challenges
facing your business.

• Few enterprises are in a position to move all their systems to new
platforms in a “Big Bang” approach, and they don't have the time
or budget to redevelop, retest, redeploy, and requalify all their
critical applications.

TECHNOLOGY
• Building good software is hard and no architectural approach is a

substitute for understanding the fundamentals of software design
and construction, or for understanding system requirements and
being able to develop and deploy solutions that properly address
those requirements.

• No single application protocol, not even SOAP, can solve all
enterprise integration problems.

B u s i n e s s I n t e g r a t i o n J o u r n a l • A p r i l 2 0 0 5 • 9

their native mechanisms must remain
intact and be integrated with other
such mechanisms wherever necessary.
Like extensibility in the area of plat-
form and protocols, extensible QoS
helps to ensure the integrity of your
established applications as you service-
enable them and extend them into new
areas.

A final example of extensibility
relates to the concept of “middleware
dark matter.” Just as dark matter invisi-
bly governs the behavior of the uni-
verse, enterprises are often powered by
“invisible” home-grown, handcrafted
solutions that are based not on recog-
nizable technologies such as J2EE or
.NET, but rather on simple yet effective
approaches involving open source Web
servers such as Apache and scripting
languages such as Perl and Python. Such
middleware dark matter systems sup-
port more strategic applications and
business processes than many might
realize, so your service orientation strat-
egy must be sure to include these appli-
cations and processes. If you select a
highly extensible enabling technology
for your services, chances are good that
you’ll be able to appropriately service-
enable the “dark matter” in your enter-
prise, enhancing its value.

Beyond the Application Server
Application servers have become a

popular application development and
deployment platform, but this doesn’t
mean that SOA stands for “Services On
Appservers.” Few organizations are pre-
pared for the time, cost, and effort it
takes to re-architect their existing appli-
cations to be deployed on an application
server. This approach also has other
potential problems.

When “application server fever” takes
hold and you spend a lot of time and
money moving applications to an appli-
cation server environment, it becomes
easy for your developers to assume that
all service and consumer applications are
based on that application server. As soon
as they make that assumption, it
becomes all too easy for them to allow
implementation details to leak into the
messages exchanged between consumers
and services. When that happens, your
infrastructure becomes brittle and
inflexible, making it harder to incorpo-
rate the newer technologies that will
arrive in the future.

Application servers can be good solu-
tions for some problems, but for many
integration projects, they’re simply too
heavyweight for what needs to be

accomplished. Their footprints can be
too large and they may cause unneces-
sary message conversions when, for
example, XML messages are converted
into and out of Java or C# objects as they
flow through the system. You might also
see that using an application server tech-
nology presents an impedance mismatch
between the systems being integrated,
such as with existing middleware
approaches based on C or C++. Finally,
they can also cause a poor service design
approach by forcing you to think first
about Java or C# objects and annotating
them with special programming lan-
guage keywords to turn them into serv-
ices, rather than first designing the
services and then treating C# and Java as
merely an implementation detail. When
you focus on the messages first, you can
choose whatever implementation
approach you deem suitable for that par-
ticular service rather than being forced
to take a “one size fits all” Java or C#
application server approach.

Coming Clean With SOAP
Finally, given the popularity of Web

services, some might try to convince you
that SOA stands for “SOAP-Only Appli-
cations.” SOAP certainly has its place in a
service-oriented enterprise. It has proved
to be a good choice for coarse-grained
integration of disparate systems. How-
ever, no single application protocol can
solve all enterprise integration problems.

Strategic legacy applications are often
the primary systems that need to be serv-
ice-enabled in the enterprise. Often,
when bringing these applications into
the service-oriented enterprise, they can-
not be modified in any way. The cost of
doing so might simply be too high. In
such cases, the only way to make them
“speak” SOAP is to front them with
SOAP gateways or bridges.

Gateways and bridges have at least
two drawbacks. First, they add more
moving parts to the overall system, thus
making the system more difficult to
debug and manage. Second, they’re gen-
erally slow because they have to convert
between the protocols and data formats
they’re bridging.

A better approach is to ensure your
enterprise system can handle multiple
protocols and data formats so consumer
applications can speak whatever native
protocol and format the service it is con-
necting to speaks. Writing applications
that are aware they’re based on SOAP
locks that application out of being able
to handle other protocols and can be a
step in the wrong direction.

Should We Redefine SOA?
SOA stands for Service-Oriented

Architecture. But is that even appropri-
ate? After all, a software architecture is
supposed to provide somewhat detailed
and formal constraints that tell you
how the various components of a sys-
tem should be connected. What we call
SOA isn’t really an architecture but
more of a set of guidelines and good
practices. This might be why people
have inflated expectations regarding
what service orientation can do for
them. They expect architectural guid-
ance, but don’t receive it. So even the
term SOA is a misnomer.

Rather than “service-oriented archi-
tecture,” consider using the term “service-
oriented approach” or simply “service
orientation.”

Conclusion
Service orientation is an approach

that focuses on the building blocks
that regularly recur as solutions within
a given application domain. With serv-
ice orientation, you focus on the mes-
sages that those building blocks, or
services, consume and emit, and you
ensure all service and consumer appli-
cation implementation details remain
completely hidden. Service orientation
also requires a focus on extensibility
and abstraction given that communica-
tion protocols and data formats are a
dime a dozen, subject to frequent
change, and ultimately irrelevant
details when it comes to solving your
business problems.

Today’s application servers and
SOAP will be tomorrow’s legacy. Have
you designed your service-oriented
enterprise to handle that when the time
comes? It will be here sooner than you
think. bij

Acknowledgements: Thanks to my IONA
colleagues Robert Morton and Jamie Osborne for their
help with this article.

Steve Vinoski is chief engineer of Product
Innovation for IONA Technologies in Waltham, MA.
He is also an IONA Fellow. He joined IONA in
December 1996 to start the company’s U.S.-based
engineering organization and to lead the
development of IONA’s next generation Adaptive
Runtime Technology (ART), a highly flexible and
high-performance distributed computing engine
that underlies the company’s products.
e-Mail: vinoski@iona.com
Website: www.iona.com/hyplan/vinoski

About the Author

